91一级特黄大片|婷婷中文字幕在线|av成人无码国产|日韩无码一二三区|久久不射强奸视频|九九九久久久精品|国产免费浮力限制

博士生袁成哲在WWW J在線發(fā)表論文
來源: 湯庸/
華南師范大學(xué)
3851
23
0
2019-08-10

   SCHOLAT實(shí)驗(yàn)室博士生袁成哲在澳大利亞皇家墨爾本理工大學(xué)(RMIT)訪學(xué)期間與RMIT大學(xué)Zhifeng Bao、Mark Sanderson教授和華南師范大學(xué)博士導(dǎo)師湯庸共同完成的論文在WWW J(CCF B類期刊)在線發(fā)表。

論文:Yuan, Chengzhe, Bao, Zhifeng, Sanderson, Mark, Tang, Yong*. Incorporating word attention with convolutional neural networks for abstractive summarization.  World Wide Web,  2019,https://doi.org/10.1007/s11280-019-00709-6


ABSTRACT:

Neural sequence-to-sequence (seq2seq) models have been widely used in abstractive summarization tasks. One of the challenges of this task is redundant contents in the input Document.often confuses the models and leads to poor performance. An efficient way to solve this problem is to select salient information from the input Document. In this paper, we propose an approach that incorporates word attention with multilayer convolutional neural networks (CNNs) to extend a standard seq2seq model for abstractive summarization. First, by concentrating on a subset of source words during encoding an input sentence, word attention is able to extract informative keywords in the input, which gives us the ability to interpret generated summaries. Second, these keywords are further distilled by multilayer CNNs to capture the coarse-grained contextual features of the input sentence. Thus, the combined word attention and multilayer CNNs modules provide a better-learned representation of the input Document. which helps the model generate interpretable, coherent and informative summaries in an abstractive summarization task.We evaluate the effectiveness of our model on the English Gigaword, DUC2004 and Chinese summarization dataset LCSTS. Experimental results show the effectiveness of our approach.


登錄用戶可以查看和發(fā)表評(píng)論, 請前往  登錄 或  注冊
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 聯(lián)系我們
聯(lián)系我們: