歡迎具有較強(qiáng)的機(jī)器學(xué)習(xí)及編程基礎(chǔ)的研究生聯(lián)系我們 Fancy AI Team。
我們的研究工作包括。
+ 聯(lián)系方式 fanchenyou@scnu.edu.cn
+ 關(guān)注“計(jì)算機(jī)視覺(jué)的小書(shū)童”,了解更多FancyAI的工作。
Who is Undercover? Guiding LLMs to Explore Multi-Perspective Team Tactic in the Game
發(fā)表于DASFAA-2025
大模型自主對(duì)話與多輪決策,實(shí)現(xiàn)誰(shuí)是臥底游戲。 文章鏈接
Carbon Price Forecasting with LLM-Based Refinement and Transfer-Learning
基于大模型蒸餾的碳市場(chǎng)時(shí)序預(yù)測(cè)與遷移學(xué)習(xí),發(fā)表于ICANN-2024,文章鏈接
Multi-horizon time series forecasting with temporal attention learning
基于時(shí)序注意力的時(shí)序預(yù)測(cè)方法,發(fā)表于KDD-2019
“Few-Shot Multi-Agent Perception With Ranking-Based Feature Learning”
基于特征學(xué)習(xí)的小樣本多智能體感知,發(fā)表于TPAMI 2023-10
"Few-shot multi-agent perception"
小樣本多智能體感知,發(fā)表于ACM MultiMedia-2021
“Private Semi-Supervised Federated Learning”
隱私保護(hù)的半監(jiān)督聯(lián)邦學(xué)習(xí),發(fā)表于IJCAI-2022
醫(yī)學(xué)大模型檢索增強(qiáng)
Medical Document Embedding Enhancement with Heterogeneous Mixture-of-Experts. 文章鏈接
發(fā)表于BIBM-2024
REMED: Retrieval-Augmented Medical Document Query Responding with Embedding Fine-Tuning
發(fā)表于IJCNN-2024
“Heterogeneous memory enhanced multimodal attention model for video question answering”
多模態(tài)視頻問(wèn)答, 發(fā)表于CVPR-2019
“Federated Prompting and Chain-of-Thought Reasoning for Improving LLMs Answering”
大模型聯(lián)邦檢索,發(fā)表于KSEM-2023
“面向網(wǎng)絡(luò)社交媒體的少樣本新冠謠言檢測(cè)”
發(fā)表于 中文信息學(xué)報(bào) 20222-01
“Identifying first-person camera wearers in third-person videos”
多視角人像檢測(cè),發(fā)表于CVPR-2017