91一级特黄大片|婷婷中文字幕在线|av成人无码国产|日韩无码一二三区|久久不射强奸视频|九九九久久久精品|国产免费浮力限制

One paper has been accepted by TIP

Our paper entitled "See Degraded Objects: A Physics-guided Approach for Object Detection in Adverse Environments" has been accepted by IEEE Transactions on Image Processing (TIP).

 

See Degraded Objects: A Physics-guided Approach for Object Detection in Adverse Environments

Weifeng Liu, Jian Pang, Bingfeng Zhang, Jin Wang, Baodi Liu, Dapeng Tao

In adverse environments, the detector often fails to detect degraded objects because they are almost invisible and their features are weakened by the environment. Common approaches involve image enhancement to support detection, but they inevitably introduce human-invisible noise that negatively impacts the detector. In this work, we propose a physics-guided approach for object detection in adverse environments, which gives a straightforward solution that injects the physical priors into the detector, enabling it to detect poorly visible objects. The physical priors, derived from the imaging mechanism and image property, include environment prior and frequency prior. The environment prior is generated from the physical model, e.g., the atmospheric model, which reflects the density of environmental noise. The frequency prior is explored based on an observation that the amplitude spectrum could highlight object regions from the background. The proposed two priors are complementary in principle. Furthermore, we present a physics-guided loss that incorporates a novel weight item, which is estimated by applying the membership function on physical priors and could capture the extent of degradation. By backpropagating the physics-guided loss, physics knowledge is injected into the detector to aid in locating degraded objects. We conduct experiments in synthetic foggy environment, real foggy environment, and real underwater scenario. The results demonstrate that our method is effective and achieves state-of-the-art performance. The code is available at https://github.com/PangJian123/See-Degraded-Objects.

 


登錄用戶可以查看和發(fā)表評(píng)論, 請(qǐng)前往  登錄 或  注冊(cè)。
SCHOLAT.com 學(xué)者網(wǎng)
免責(zé)聲明 | 關(guān)于我們 | 用戶反饋
聯(lián)系我們: